Is searching full text more effective than searching abstracts?

BMC Bioinformatics 2009
By Jimmy Lin

Presented by Nils Schimmelmann

Comparing text retrieval techniques through different models, metrics, and configurations
Introduction to Text Mining in the Life Sciences

- Text mining is necessary
- The rate of available articles is growing exponentially
- Most current systems search abstracts only
- Effective full-text search methods will become more integral as time goes on
Background

- Open Access is causing more articles to be easily and freely viewable
- More data makes it more difficult to find relevant articles from searches
- More advanced text retrieval algorithms are needed
The Question

• Is full-text mining necessary when there are abstracts?

• Sometimes abstracts are good enough!
Related Work

- Some search techniques use title, abstract, and metadata information
 - Medical Text Indexer (MTI)
 - Such techniques cannot be easily converted to full texts
 - Attempted with full texts giving lackluster results

- Text mining covers more than just the basic 'search engine' functionality
 - For example...
Related Work

- Using surface patterns to extract gene and protein synonyms
 - Higher precision using full texts
- Exploring gene-disease associations
 - Small gain in effectiveness with full texts
- Clinical decision support
 - Abstracts were enough
- Summarization of figures and tables
 - Abstracts can summarize them effectively (80%+)
Comparing Abstracts to Full Text: Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Abstracts</th>
<th>Full Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of useful information is at its highest</td>
<td>Higher coverage of information</td>
</tr>
<tr>
<td>Less text, allowing for less computational power</td>
<td>More text, requires clusters of computers</td>
</tr>
<tr>
<td></td>
<td>Noise from more text (conjectures, future work, citations)</td>
</tr>
<tr>
<td></td>
<td>Variety of formats: PDF, HTML, XML, etc</td>
</tr>
<tr>
<td></td>
<td>Required for some uses (image searching)</td>
</tr>
</tbody>
</table>
Method

- Compare two different models (programs/algorithms)
- Use three different evaluation metrics
- Compare the resulting experiments against a base abstract retrieval method
Method

- **Test Collection:**
 - 162,259 full-text articles from Highwire press
 - 36 topics annotated by humans

- **Retrieval Models:**
 - Okapi $bm25$ ranking algorithm using the MapReduce programming model on Ivory/Hadoop
 - Open-source search engine Lucene's ranking algorithm $tf.idf$
Method

- Indexes:
 - **Abstract index**: built from only abstracts
 - **Article index**: made up of all the articles
 - **Span index**: consisting of the paragraphs in the articles

- Evaluation Metric:
 - Mean Average Precision (MAP)
 - Precision at 20 (P20): Top 20 Articles
 - Interpolated precision at recall of 50% (IP@R50)
“Legal Spans” Retrieval Model

- Articles were divided into 12.6 million ”legal spans” (paragraphs)

- Rankings were post-processed for each retrieval model (bm25 and tf.idf for Lucene)

- Two methods were used:
 - **Maximum of supporting spans (max):** favors highest
 - **Sum of supporting spans (sum):** favors many potentially relevant spans
Results

Table 1: Effectiveness of $bm25$ and the Lucene ranking algorithm on abstracts, full-text articles, and spans from full text.

<table>
<thead>
<tr>
<th></th>
<th>Ivy$_{(bm25)}$</th>
<th>Ivy$_{(Lucene)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>0.163</td>
<td>0.129</td>
</tr>
<tr>
<td>Article</td>
<td>0.146 (-11%)$^\circ$</td>
<td>0.235 (+82%)**</td>
</tr>
<tr>
<td>Span (max)</td>
<td>0.240 (+47%)**</td>
<td>0.206 (+60%)**</td>
</tr>
<tr>
<td>Span (sum)</td>
<td>0.192 (+18%)*</td>
<td>0.198 (+54%)**</td>
</tr>
</tbody>
</table>

P20		
Abstract	0.322	0.293
Article	0.158 (-51%)**	0.353 (+20%)*
Span (max)	0.357 (+11%)$^\circ$	0.332 (+13%)$^\circ$
Span (sum)	0.314 (-3%)$^\circ$	0.317 (+8%)*

IP@R50		
Abstract	0.110	0.090
Article	0.163 (+48%)$^\circ$	0.222 (+146%)**
Span (max)	0.212 (+93%)**	0.189 (+109%)**
Span (sum)	0.149 (+36%)*	0.159 (+77%)**

For all metrics, relative improvements over baseline are shown; ** = statistically significant ($p < 0.01$); * = statistically significant ($p < 0.05$); $^\circ$ = not significant.
Table 3: Effectiveness of bm25 and the Lucene ranking algorithm combining evidence from spans with evidence from abstracts and articles.

MAP

<table>
<thead>
<tr>
<th></th>
<th>Ivory (bm25)</th>
<th>Ivory (Lucene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span (max)</td>
<td>0.240</td>
<td>0.206</td>
</tr>
<tr>
<td>Span (max) + Abstract</td>
<td>0.257 (+7%)</td>
<td>0.216 (+5%)</td>
</tr>
<tr>
<td>Span (max) + Article</td>
<td>0.257 (+7%)</td>
<td>0.262 (+27%)**</td>
</tr>
</tbody>
</table>

P20

<table>
<thead>
<tr>
<th></th>
<th>Ivory (bm25)</th>
<th>Ivory (Lucene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span (max)</td>
<td>0.357</td>
<td>0.332</td>
</tr>
<tr>
<td>Span (max) + Abstract</td>
<td>0.382 (+7%)</td>
<td>0.349 (+5%)</td>
</tr>
<tr>
<td>Span (max) + Article</td>
<td>0.343 (-4%)</td>
<td>0.404 (+22%)**</td>
</tr>
</tbody>
</table>

IP@R50

<table>
<thead>
<tr>
<th></th>
<th>Ivory (bm25)</th>
<th>Ivory (Lucene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span (max)</td>
<td>0.212</td>
<td>0.189</td>
</tr>
<tr>
<td>Span (max) + Abstract</td>
<td>0.215 (+1%)</td>
<td>0.190 (+1%)</td>
</tr>
<tr>
<td>Span (max) + Article</td>
<td>0.257 (+21%)</td>
<td>0.244 (+29%)**</td>
</tr>
</tbody>
</table>

For all metrics, relative improvements over baseline are shown; **= statistically significant ($p < 0.01$); *= statistically significant ($p < 0.05$); °= not significant.

← Best method is span (max)
Conclusion/Discussion

- The Lucine model along with the "legal spans" method and the "max" evaluation metric provides the best solo result.

- Averaging span and article evidence yields the best results.

- "max" is doing better than "sum" because of length normalization which would bias the "sum" methodology.
Ranking Algorithms

- Standard "bag of words" model from which all ranking algorithms have a base

\[\sum_{t \in q} w_{t,d} \cdot w_{t,q} \]

- Okapi bm25

\[\sum_{t \in q} \log \left(\frac{N - n + 0.5}{n + 0.5} \right) \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf} \]

\[K = k_1 \left((1 - b) - b \frac{dl}{avdl} \right) \]

- Parameters:
 - \(N \) = number of documents
 - \(n \) = number of documents with the term
 - \(tf \) = term frequency
 - \(qtf \) = query term frequency
 - \(K \) = normalization factor
 - \(avdl \) = average length of all documents
 - \(dl \) = document length
 - \(k_1, k_3, b \) = tunable parameters
Ranking Algorithms

- Lucene (modified from \(tf.idf\))

\[
c \sum_{t \in q} \sqrt{tf} \left(1 + \log \frac{N}{n+1}\right)^2 \left(\frac{1}{\sqrt{dl}}\right)
\]

- \(N =\) number of documents
- \(dl =\) document length
- \(n =\) number of documents with the terms
- \(tf =\) term frequency
- \(c =\) fraction of query terms in the document

- \(c\) rewards documents with many terms
Other Difficulties: Computational Power

- Ivory
 - An Open Source implementation of a distributed text retrieval system
 - Built upon Hadoop

- Hadoop is a open source Java implementation of MapReduce
 - Created by Google

![Diagram of MapReduce process](image)